
Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Implementation of an Extensible, Agent-Based
Simulation Program for Barter Economics

Pelle Evensen & Mait Märdin

December 18, 2008



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Agent-Based Computational Economics (ACE)

Definition

The computational study of economic processes modelled as dynamic
systems of interacting agents.

What it typically looks like. . .

• Define privately motivated agents with learning capabilities.

• Construct an agent-based world that defines the interactions
between these agents.

• Start the model and let the world develop over time.

• If we are lucky, surprising things will happen!



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Agent-Based Computational Economics (ACE)

Definition

The computational study of economic processes modelled as dynamic
systems of interacting agents.

What it typically looks like. . .

• Define privately motivated agents with learning capabilities.

• Construct an agent-based world that defines the interactions
between these agents.

• Start the model and let the world develop over time.

• If we are lucky, surprising things will happen!



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Agent-Based Computational Economics (ACE)

The objectives of ACE

• To understand why particular global regularities have evolved and
persisted in real-world economies. The aim is to create an
agent-based model that would generate some particular regularity.

• To discover good economic designs. Agent-based models are used as
laboratories to evaluate the efficiency of various economic designs.

• To advance the methods and tools used to create the agent-based
models.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Agent-Based Computational Economics (ACE)

The advantages over mathematical modelling

• Agents do not have to be rational.
Limit the rationality of agents and see what happens.

• It is easy to make simulations with heterogenous agent behaviours.

• Easy to model physical space or social networks between the agents.

• An agent-based model is “solved” merely by executing it.
We can sit back and see what happens.

The disadvantage

A single run of a simulation does not say anything about the robustness
of the results.

Overall

ACE is a young field without well established development standards.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Agent-Based Computational Economics (ACE)

The advantages over mathematical modelling

• Agents do not have to be rational.
Limit the rationality of agents and see what happens.

• It is easy to make simulations with heterogenous agent behaviours.

• Easy to model physical space or social networks between the agents.

• An agent-based model is “solved” merely by executing it.
We can sit back and see what happens.

The disadvantage

A single run of a simulation does not say anything about the robustness
of the results.

Overall

ACE is a young field without well established development standards.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Agent-Based Computational Economics (ACE)

The advantages over mathematical modelling

• Agents do not have to be rational.
Limit the rationality of agents and see what happens.

• It is easy to make simulations with heterogenous agent behaviours.

• Easy to model physical space or social networks between the agents.

• An agent-based model is “solved” merely by executing it.
We can sit back and see what happens.

The disadvantage

A single run of a simulation does not say anything about the robustness
of the results.

Overall

ACE is a young field without well established development standards.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

The Barter Economy

The origin

• Devised by Herbert Gintis and published in 2006; “The Emergence
of a Price System from Decentralized Bilateral Exchange”.

• A proof of concept implementation in Delphi.

• Aims to find a price adjustment mechanism that would lead to
equilibrium prices (the prices for which demand equals supply for all
goods).

The defining properties of the model

• Simple bartering of goods; no money or firms.

• Private prices for all agents.

• Less successful agents are regularly replaced by more successful ones.

• The emergence of equilibrium prices in the long run.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

The Barter Economy

The origin

• Devised by Herbert Gintis and published in 2006; “The Emergence
of a Price System from Decentralized Bilateral Exchange”.

• A proof of concept implementation in Delphi.

• Aims to find a price adjustment mechanism that would lead to
equilibrium prices (the prices for which demand equals supply for all
goods).

The defining properties of the model

• Simple bartering of goods; no money or firms.

• Private prices for all agents.

• Less successful agents are regularly replaced by more successful ones.

• The emergence of equilibrium prices in the long run.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

The Barter Economy

The main parameters of the model

g number of goods

n number of agents per good

p number of bartering periods

m maximum number of trade attempts in one period

The agent in the Barter economy

• Produces a single good.

• Has its own price idea for every good.

• Barters the produced good for other desirable goods.

• Only agrees to barter if received value ≥ given value.

• Eats the obtained goods.

• The more it eats, the higher the score.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

The Barter Economy

The main parameters of the model

g number of goods

n number of agents per good

p number of bartering periods

m maximum number of trade attempts in one period

The agent in the Barter economy

• Produces a single good.

• Has its own price idea for every good.

• Barters the produced good for other desirable goods.

• Only agrees to barter if received value ≥ given value.

• Eats the obtained goods.

• The more it eats, the higher the score.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Our goals

• Replicate Gintis’ Barter economy model.

• At the same time, re-engineer the proof of concept implementation
to an extensible simulation tool for barter economics.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Our goals

• Replicate Gintis’ Barter economy model.

• At the same time, re-engineer the proof of concept implementation
to an extensible simulation tool for barter economics.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Our goals

• Replicate Gintis’ Barter economy model.

• At the same time, re-engineer the proof of concept implementation
to an extensible simulation tool for barter economics.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Replication of agent-based models

What do we mean by replication?

The implementation of a conceptual model described and already
implemented (the original model) at a previous time.

The problem

More and more agent-based models are created in natural and social
sciences. Most of these models have never been replicated by anyone but
the original developer.

The importance of replication

• Verification—to determine whether the implemented model
corresponds to the target conceptual model.

• Validation—to determine whether the implemented model
corresponds to and explains some phenomenon in the real world.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Replication of agent-based models

What do we mean by replication?

The implementation of a conceptual model described and already
implemented (the original model) at a previous time.

The problem

More and more agent-based models are created in natural and social
sciences. Most of these models have never been replicated by anyone but
the original developer.

The importance of replication

• Verification—to determine whether the implemented model
corresponds to the target conceptual model.

• Validation—to determine whether the implemented model
corresponds to and explains some phenomenon in the real world.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Replication of agent-based models

What do we mean by replication?

The implementation of a conceptual model described and already
implemented (the original model) at a previous time.

The problem

More and more agent-based models are created in natural and social
sciences. Most of these models have never been replicated by anyone but
the original developer.

The importance of replication

• Verification—to determine whether the implemented model
corresponds to the target conceptual model.

• Validation—to determine whether the implemented model
corresponds to and explains some phenomenon in the real world.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Three categories of replication standards

Numerical identity

Showing that the original and replicated model produce the exact same
numerical results.

Distributional equivalence

Showing that the two implemented models are statistically similar to each
other.

Relational alignment

Showing that the results of the two implemented models have
qualitatively similar relationships between input and output variables.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Three categories of replication standards

Numerical identity

Showing that the original and replicated model produce the exact same
numerical results.

Distributional equivalence

Showing that the two implemented models are statistically similar to each
other.

Relational alignment

Showing that the results of the two implemented models have
qualitatively similar relationships between input and output variables.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Three categories of replication standards

Numerical identity

Showing that the original and replicated model produce the exact same
numerical results.

Distributional equivalence

Showing that the two implemented models are statistically similar to each
other.

Relational alignment

Showing that the results of the two implemented models have
qualitatively similar relationships between input and output variables.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Replicating the Barter economy

Verification rather than validation

We can verify whether the original implementation is correct with regards
to its description. Validation is up to economists.

Our method

• Start from the source code.

• Port from Delphi to Java.

• Use the multi-agent simulation toolkit MASON.

• Compare the results.

Distributional equivalence rather than numerical identity

Our choices ruled out the numerical identity: different implementation
language and different random number generator (enforced by the
framework).

How did it go?



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Replicating the Barter economy

Verification rather than validation

We can verify whether the original implementation is correct with regards
to its description. Validation is up to economists.

Our method

• Start from the source code.

• Port from Delphi to Java.

• Use the multi-agent simulation toolkit MASON.

• Compare the results.

Distributional equivalence rather than numerical identity

Our choices ruled out the numerical identity: different implementation
language and different random number generator (enforced by the
framework).

How did it go?



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Replicating the Barter economy

Verification rather than validation

We can verify whether the original implementation is correct with regards
to its description. Validation is up to economists.

Our method

• Start from the source code.

• Port from Delphi to Java.

• Use the multi-agent simulation toolkit MASON.

• Compare the results.

Distributional equivalence rather than numerical identity

Our choices ruled out the numerical identity: different implementation
language and different random number generator (enforced by the
framework).

How did it go?



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Replicating the Barter economy

Verification rather than validation

We can verify whether the original implementation is correct with regards
to its description. Validation is up to economists.

Our method

• Start from the source code.

• Port from Delphi to Java.

• Use the multi-agent simulation toolkit MASON.

• Compare the results.

Distributional equivalence rather than numerical identity

Our choices ruled out the numerical identity: different implementation
language and different random number generator (enforced by the
framework).

How did it go?



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

How similar are our programs?

Similar enough?

0 50 100 150 200 250
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0 50 100 150 200 250
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Testing distribution properties

We want to see if we have distributional equivalence, i.e. if we can
distinguish the two programs with regards to the distribution of their
outputs.

The two-sample Kolmogorov-Smirnov test

• Gives the probability that two samples are drawn from the same
distribution.

• Only assumption is that the distribution is continuous.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Testing distribution properties

We want to see if we have distributional equivalence, i.e. if we can
distinguish the two programs with regards to the distribution of their
outputs.

The two-sample Kolmogorov-Smirnov test

• Gives the probability that two samples are drawn from the same
distribution.

• Only assumption is that the distribution is continuous.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Empirical distribution functions

0

0.25

0.5

0.75

1

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1

J & Gk , period 150000,
Good 1 of 7, maxTries = 300

p = 0.7237
0

0.25

0.5

0.75

1

−0.1 −0.05 0 0.05 0.1

J & Gk , period 30000,
Good 1 of 3, ∆mutation = 0.975

p = 9.465× 10−5

• Curves show the proportion of samples (y -axis) that are less than
the x-axis value. E.g. about half the values of the “red” program in
the left chart are less than -0.4 & 75% of the values of the “red”
program to the right are less than 0.025.

• If we sample from the same distribution, we should expect the
difference between the blue & red lines to approach zero as the
sample size increases.

• The KS-test gives us the probability that the maximum measured
difference is due to chance.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Empirical distribution functions

0

0.25

0.5

0.75

1

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1

J & Gk , period 150000,
Good 1 of 7, maxTries = 300

p = 0.7237
0

0.25

0.5

0.75

1

−0.1 −0.05 0 0.05 0.1

J & Gk , period 30000,
Good 1 of 3, ∆mutation = 0.975

p = 9.465× 10−5

• Curves show the proportion of samples (y -axis) that are less than
the x-axis value. E.g. about half the values of the “red” program in
the left chart are less than -0.4 & 75% of the values of the “red”
program to the right are less than 0.025.

• If we sample from the same distribution, we should expect the
difference between the blue & red lines to approach zero as the
sample size increases.

• The KS-test gives us the probability that the maximum measured
difference is due to chance.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Empirical distribution functions

0

0.25

0.5

0.75

1

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1

J & Gk , period 150000,
Good 1 of 7, maxTries = 300

p = 0.7237
0

0.25

0.5

0.75

1

−0.1 −0.05 0 0.05 0.1

J & Gk , period 30000,
Good 1 of 3, ∆mutation = 0.975

p = 9.465× 10−5

• Curves show the proportion of samples (y -axis) that are less than
the x-axis value. E.g. about half the values of the “red” program in
the left chart are less than -0.4 & 75% of the values of the “red”
program to the right are less than 0.025.

• If we sample from the same distribution, we should expect the
difference between the blue & red lines to approach zero as the
sample size increases.

• The KS-test gives us the probability that the maximum measured
difference is due to chance.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Testing procedure

1 Choose a set of parameters.

2 Run both programs multiple times with different seeds but same
parameters and record the average prices for each good (vs. some
reference good) at regular intervals for each run.

3 Compare the distributions for the two program at some time periods.

4 Consider the programs to not match for the parameter set under test
if the KS-test fails spectacularly (p < 10−6 or so) for any good.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Testing procedure

1 Choose a set of parameters.

2 Run both programs multiple times with different seeds but same
parameters and record the average prices for each good (vs. some
reference good) at regular intervals for each run.

3 Compare the distributions for the two program at some time periods.

4 Consider the programs to not match for the parameter set under test
if the KS-test fails spectacularly (p < 10−6 or so) for any good.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Testing procedure

1 Choose a set of parameters.

2 Run both programs multiple times with different seeds but same
parameters and record the average prices for each good (vs. some
reference good) at regular intervals for each run.

3 Compare the distributions for the two program at some time periods.

4 Consider the programs to not match for the parameter set under test
if the KS-test fails spectacularly (p < 10−6 or so) for any good.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Testing procedure

1 Choose a set of parameters.

2 Run both programs multiple times with different seeds but same
parameters and record the average prices for each good (vs. some
reference good) at regular intervals for each run.

3 Compare the distributions for the two program at some time periods.

4 Consider the programs to not match for the parameter set under test
if the KS-test fails spectacularly (p < 10−6 or so) for any good.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

What’s the verdict?

Unfortunately, for 4 parameter sets out of the 20 we have tested, the
KS-test gives a very low probability for at least one good and for at least
some part of the time series.

We conclude that our program does not (for all parameter sets) have the
same distribution of prices over time as Gintis’ program has.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

What’s the verdict?

Unfortunately, for 4 parameter sets out of the 20 we have tested, the
KS-test gives a very low probability for at least one good and for at least
some part of the time series.

We conclude that our program does not (for all parameter sets) have the
same distribution of prices over time as Gintis’ program has.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

All is lost?

Fortunately, no!
From a user’s perspective, we are interested in seeing that we get a
similar convergence behaviour on average.
If the distributions don’t match, we can do a confidence interval on the
difference of means for the two programs.
When we check what the worst µ1 − µ2 is for the 5 periods closest to the
stopping point we find that it is on the interval {−0.028,−0.021} with
99.9% probability.

In other words; the worst difference we have found between our programs
for the parameter sets we have been using is that our program is at most
3% low (−0.028) compared to Gintis’ program.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

All is lost?

Fortunately, no!
From a user’s perspective, we are interested in seeing that we get a
similar convergence behaviour on average.
If the distributions don’t match, we can do a confidence interval on the
difference of means for the two programs.
When we check what the worst µ1 − µ2 is for the 5 periods closest to the
stopping point we find that it is on the interval {−0.028,−0.021} with
99.9% probability.

In other words; the worst difference we have found between our programs
for the parameter sets we have been using is that our program is at most
3% low (−0.028) compared to Gintis’ program.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

How come?

In the interest of time, we have continued our thesis work after having
spent around one working week looking for what may be a bug.
Whether it is a bug in our program or in Gintis’ program is hard to tell;
almost all methods in both programs rely heavily on (pseudo-)random
numbers.

Even if they did not, we have not had the time necessary to invest in
checking that Java and Delphi are using the same floating point
arithmetic standard for 64-bit floats. Unless we know that they are
behaving identically, testing for numerical identity is pointless.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

How come?

In the interest of time, we have continued our thesis work after having
spent around one working week looking for what may be a bug.
Whether it is a bug in our program or in Gintis’ program is hard to tell;
almost all methods in both programs rely heavily on (pseudo-)random
numbers.
Even if they did not, we have not had the time necessary to invest in
checking that Java and Delphi are using the same floating point
arithmetic standard for 64-bit floats. Unless we know that they are
behaving identically, testing for numerical identity is pointless.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Generalisations

Generalising Barter

Gintis has published at least one more complex model called GenEqui.
GenEqui includes concepts such as money, workers and factories.
Should we have implemented GenEqui instead and provided an API to
implement Barter?

Barter * GenEqui

Making an implementation of Barter that encompasses GenEqui
would force overly complex interfaces onto Barter.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Generalisations

Generalising Barter

Gintis has published at least one more complex model called GenEqui.
GenEqui includes concepts such as money, workers and factories.
Should we have implemented GenEqui instead and provided an API to
implement Barter?

Barter * GenEqui

Making an implementation of Barter that encompasses GenEqui
would force overly complex interfaces onto Barter.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Extension types

Two types

• Extensions to individual agent behaviours

• Extensions to the the market (the rules that all agents have to
honor).

We treat them separately in favour of making studies of heterogeneous
agent behaviours easy to carry out.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Orthogonality

“Orthogonality guarantees that modifying the technical effect
produced by a component of a system neither creates nor
propagates side effects to other components of the system.”
—Wikipedia

Example

Generalise to include a monetary good so that agents can trade either the
good they produce or the money good.

Consequence

One could not implement handling of the money good as a trade agent
behaviour without also making sure that the market (and all trade
agents) also are aware of the new, special purpose, good =⇒
non-orthogonality.

• Making the model more general is difficult if we want to keep the
extensions orthogonal to each other.

• Each extension would either have to handle a very general interface
and/or depend on other extensions.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Orthogonality

“Orthogonality guarantees that modifying the technical effect
produced by a component of a system neither creates nor
propagates side effects to other components of the system.”
—Wikipedia

Example

Generalise to include a monetary good so that agents can trade either the
good they produce or the money good.

Consequence

One could not implement handling of the money good as a trade agent
behaviour without also making sure that the market (and all trade
agents) also are aware of the new, special purpose, good =⇒
non-orthogonality.

• Making the model more general is difficult if we want to keep the
extensions orthogonal to each other.

• Each extension would either have to handle a very general interface
and/or depend on other extensions.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Orthogonality

“Orthogonality guarantees that modifying the technical effect
produced by a component of a system neither creates nor
propagates side effects to other components of the system.”
—Wikipedia

Example

Generalise to include a monetary good so that agents can trade either the
good they produce or the money good.

Consequence

One could not implement handling of the money good as a trade agent
behaviour without also making sure that the market (and all trade
agents) also are aware of the new, special purpose, good =⇒
non-orthogonality.

• Making the model more general is difficult if we want to keep the
extensions orthogonal to each other.

• Each extension would either have to handle a very general interface
and/or depend on other extensions.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Orthogonality

“Orthogonality guarantees that modifying the technical effect
produced by a component of a system neither creates nor
propagates side effects to other components of the system.”
—Wikipedia

Example

Generalise to include a monetary good so that agents can trade either the
good they produce or the money good.

Consequence

One could not implement handling of the money good as a trade agent
behaviour without also making sure that the market (and all trade
agents) also are aware of the new, special purpose, good =⇒
non-orthogonality.

• Making the model more general is difficult if we want to keep the
extensions orthogonal to each other.

• Each extension would either have to handle a very general interface
and/or depend on other extensions.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Orthogonality

“Orthogonality guarantees that modifying the technical effect
produced by a component of a system neither creates nor
propagates side effects to other components of the system.”
—Wikipedia

Example

Generalise to include a monetary good so that agents can trade either the
good they produce or the money good.

Consequence

One could not implement handling of the money good as a trade agent
behaviour without also making sure that the market (and all trade
agents) also are aware of the new, special purpose, good =⇒
non-orthogonality.

• Making the model more general is difficult if we want to keep the
extensions orthogonal to each other.

• Each extension would either have to handle a very general interface
and/or depend on other extensions.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Extension Points

An extension point describes a point in a use case where an extending
use case may provide additional behaviour.

• Figuring out what should be useful extension points is made difficult
by neither of us having a background in ACE.

• We may have provided points that were easy to handle rather than
points that are “useful”.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Extension Points, cont.

We explicitly prevent extension by implementation inheritance through
making the two main classes, TradeAgent and BarterEconomy, final.
All extensions have to be done by providing the agent or market with
strategies.

Advantages

• Assuming the strategies are not too powerful, we can always
guarantee that the class invariants of the extended classes hold to
the same extent they do in the non-extended case.

• A programmer can not, deliberately or not, violate any assumptions
on scope we had in mind. cf. protection proxy, facet

Disadvantage

• The classes can only be extended in the ways we have chosen to be
useful.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Extension Points, cont.

We explicitly prevent extension by implementation inheritance through
making the two main classes, TradeAgent and BarterEconomy, final.
All extensions have to be done by providing the agent or market with
strategies.

Advantages

• Assuming the strategies are not too powerful, we can always
guarantee that the class invariants of the extended classes hold to
the same extent they do in the non-extended case.

• A programmer can not, deliberately or not, violate any assumptions
on scope we had in mind. cf. protection proxy, facet

Disadvantage

• The classes can only be extended in the ways we have chosen to be
useful.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Extension Points, cont.

We explicitly prevent extension by implementation inheritance through
making the two main classes, TradeAgent and BarterEconomy, final.
All extensions have to be done by providing the agent or market with
strategies.

Advantages

• Assuming the strategies are not too powerful, we can always
guarantee that the class invariants of the extended classes hold to
the same extent they do in the non-extended case.

• A programmer can not, deliberately or not, violate any assumptions
on scope we had in mind. cf. protection proxy, facet

Disadvantage

• The classes can only be extended in the ways we have chosen to be
useful.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Concrete extension points

Agent Barter Strategy

Agent Improvement Strategies

Market Replacement/Mutation Strategy



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Concrete extension points

Agent Barter Strategy

Agent Improvement Strategies

Market Replacement/Mutation Strategy



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Concrete extension points

Agent Barter Strategy

Agent Improvement Strategies

Market Replacement/Mutation Strategy



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Algorithm complexity for the model

function model(p, n, g ,m)
for A = 1 to p
for B = 1 to g
for C = 1 to n
for D = 1 to g
for E = 1 to m + g
Traded or tried m times

end for
end for

end for
end for

end for
end function

Parameters

p : periods, n : agents per good,

g : number of goods, m : maximum

number of barter attempts, c : number

of CPUs

Asymptotic worst case complexity

O(png 2(m + g))

Linear in number of agents and
periods but note the g 3.

How far is this from the
average time complexity?



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Algorithm complexity for the model

function model(p, n, g ,m)
for A = 1 to p
for B = 1 to g
for C = 1 to n
for D = 1 to g
for E = 1 to m + g
Traded or tried m times

end for
end for

end for
end for

end for
end function

Parameters

p : periods, n : agents per good,

g : number of goods, m : maximum

number of barter attempts, c : number

of CPUs

Asymptotic worst case complexity

O(png 2(m + g))

Linear in number of agents and
periods but note the g 3.

How far is this from the
average time complexity?



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Algorithm complexity for the model

function model(p, n, g ,m)
for A = 1 to p
for B = 1 to g
for C = 1 to n
for D = 1 to g
for E = 1 to m + g
Traded or tried m times

end for
end for

end for
end for

end for
end function

Parameters

p : periods, n : agents per good,

g : number of goods, m : maximum

number of barter attempts, c : number

of CPUs

Asymptotic worst case complexity

O(png 2(m + g))

Linear in number of agents and
periods but note the g 3.

How far is this from the
average time complexity?



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Timing the program

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5 10 15 20 25 30

C
P

U
-s

ec
o

n
d

s

goods

Measured time compared to fitted cubic
polynomial, x being the number of goods.

1
10 (0.04x3 + 1.1x2 − 5.1x + 40)

3
10 (0.04x3 + 1.1x2 − 5.1x + 40)

5
10 (0.04x3 + 1.1x2 − 5.1x + 40)

7
10 (0.04x3 + 1.1x2 − 5.1x + 40)

9
10 (0.04x3 + 1.1x2 − 5.1x + 40)

The cubic coefficient is more than one order of magnitude smaller than
the quadratic coefficient. Perhaps not that bad after all.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Timing the program

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5 10 15 20 25 30

C
P

U
-s

ec
o

n
d

s

goods

Measured time compared to fitted cubic
polynomial, x being the number of goods.

1
10 (0.04x3 + 1.1x2 − 5.1x + 40)

3
10 (0.04x3 + 1.1x2 − 5.1x + 40)

5
10 (0.04x3 + 1.1x2 − 5.1x + 40)

7
10 (0.04x3 + 1.1x2 − 5.1x + 40)

9
10 (0.04x3 + 1.1x2 − 5.1x + 40)

The cubic coefficient is more than one order of magnitude smaller than
the quadratic coefficient. Perhaps not that bad after all.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Fitting errors

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

5 10 15 20 25 30
goods

Difference ratio between measured time and
fitted polynomial, y = (mg,a − fg,a)/mg,a

100 200 300 400 500 600 700 800 900



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Possible gains from concurrency

Our program is not concurrent save for the Swing-thread.

function model(p, n, g ,m)
for A = 1 to p
for B = 1 to g
for C = 1 to n
for D = 1 to g
for E = 1 to m + g
Traded or tried m times

end for
end for

end for
end for

end for
end function

Parameters

p : periods, n : agents per good,

g : number of goods, m : maximum

number of barter attempts, c : number

of CPUs

• As seen from the time
measurements, the average
complexity for the D-loop is closer
to O(g) (or possibly O(gm)).

• The C loop, having complexity
O(ng(m + g)), is possible to
parallelise over n for average
complexity O(c−1g).

• Possible average running time
of order O(c−1ng(m + g)) for
the complete program.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Possible gains from concurrency

Our program is not concurrent save for the Swing-thread.

function model(p, n, g ,m)
for A = 1 to p
for B = 1 to g
for C = 1 to n
for D = 1 to g
for E = 1 to m + g
Traded or tried m times

end for
end for

end for
end for

end for
end function

Parameters

p : periods, n : agents per good,

g : number of goods, m : maximum

number of barter attempts, c : number

of CPUs

• As seen from the time
measurements, the average
complexity for the D-loop is closer
to O(g) (or possibly O(gm)).

• The C loop, having complexity
O(ng(m + g)), is possible to
parallelise over n for average
complexity O(c−1g).

• Possible average running time
of order O(c−1ng(m + g)) for
the complete program.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Possible gains from concurrency

Our program is not concurrent save for the Swing-thread.

function model(p, n, g ,m)
for A = 1 to p
for B = 1 to g
for C = 1 to n
for D = 1 to g
for E = 1 to m + g
Traded or tried m times

end for
end for

end for
end for

end for
end function

Parameters

p : periods, n : agents per good,

g : number of goods, m : maximum

number of barter attempts, c : number

of CPUs

• As seen from the time
measurements, the average
complexity for the D-loop is closer
to O(g) (or possibly O(gm)).

• The C loop, having complexity
O(ng(m + g)), is possible to
parallelise over n for average
complexity O(c−1g).

• Possible average running time
of order O(c−1ng(m + g)) for
the complete program.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Possible gains from concurrency

Our program is not concurrent save for the Swing-thread.

function model(p, n, g ,m)
for A = 1 to p
for B = 1 to g
for C = 1 to n
for D = 1 to g
for E = 1 to m + g
Traded or tried m times

end for
end for

end for
end for

end for
end function

Parameters

p : periods, n : agents per good,

g : number of goods, m : maximum

number of barter attempts, c : number

of CPUs

• As seen from the time
measurements, the average
complexity for the D-loop is closer
to O(g) (or possibly O(gm)).

• The C loop, having complexity
O(ng(m + g)), is possible to
parallelise over n for average
complexity O(c−1g).

• Possible average running time
of order O(c−1ng(m + g)) for
the complete program.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

And now for something completely different!

• What does our program look like?



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Contributions

What have we done?

• Replicated the original Barter economy model.

• Provided a new, portable and extensible simulation tool for barter
economies.

• Provided means for improved intuitive understanding of the model
by adding individual agent visualisation.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Conclusions

Our conclusions

• Replication is important. We found discrepancies between the
description of the model and the original implementation.

• Replicating an agent-based model is hard. The global model
behaviour is sensitive to seemingly small details such as the random
number generation, rounding of the floating-point values, or the
order of simulated events.

• Defining what convergence means is hard. If the numerical identity
property is not feasible, we need a relevant statistic to say that the
original model and the reimplementation behave the same way.

• If we were to do it over, we would first try to achieve the numerical
identity at the function level. Then change the design step by step
while observing that the numerical identity is preserved.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Conclusions

Our conclusions

• Replication is important. We found discrepancies between the
description of the model and the original implementation.

• Replicating an agent-based model is hard. The global model
behaviour is sensitive to seemingly small details such as the random
number generation, rounding of the floating-point values, or the
order of simulated events.

• Defining what convergence means is hard. If the numerical identity
property is not feasible, we need a relevant statistic to say that the
original model and the reimplementation behave the same way.

• If we were to do it over, we would first try to achieve the numerical
identity at the function level. Then change the design step by step
while observing that the numerical identity is preserved.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Conclusions

Our conclusions

• Replication is important. We found discrepancies between the
description of the model and the original implementation.

• Replicating an agent-based model is hard. The global model
behaviour is sensitive to seemingly small details such as the random
number generation, rounding of the floating-point values, or the
order of simulated events.

• Defining what convergence means is hard. If the numerical identity
property is not feasible, we need a relevant statistic to say that the
original model and the reimplementation behave the same way.

• If we were to do it over, we would first try to achieve the numerical
identity at the function level. Then change the design step by step
while observing that the numerical identity is preserved.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Conclusions

Our conclusions

• Replication is important. We found discrepancies between the
description of the model and the original implementation.

• Replicating an agent-based model is hard. The global model
behaviour is sensitive to seemingly small details such as the random
number generation, rounding of the floating-point values, or the
order of simulated events.

• Defining what convergence means is hard. If the numerical identity
property is not feasible, we need a relevant statistic to say that the
original model and the reimplementation behave the same way.

• If we were to do it over, we would first try to achieve the numerical
identity at the function level. Then change the design step by step
while observing that the numerical identity is preserved.



Introduction Replication Convergence properties Extensions Scalability Running the program Conclusions

Thanks for listening

Questions?


	Introduction
	
	
	
	

	Replication
	
	
	

	Convergence properties
	Plots of runs

	Extensions
	Generalisations
	Orthogonality
	Extension points

	Scalability
	Algorithm structure for the model
	How big instances can we handle?
	Concurrency

	Running the program
	

	Conclusions
	
	


